Skip to main content

How to tell if your Firewall is a full DMZ

Most firewalls have a 'DMZ' setting, but are they actually a full DMZ firewall? DMZ is a term often used in network security, but it can mean two different things to manufacturers and practitioners. Technically, there is no such thing as a DMZ in a firewall architecture, only a screened-subnet firewall, screened-host firewall or an exposed host, but the term is the industry standard when talking about allowing access to information servers (e.g. web, mail, etc.) from the Internet.

So what is a DMZ? DMZ stands for Demilitarized Zone and is, obviously, a military term for the no-go area between two armies where no military activity is allowed. However, in network security terms it is a secure subnet that separates the Internet from the internal machines on your network. This becomes a logical place to implement any Information Servers, as these can be partially opened to the Internet, whilst not allowing direct access to the internal network. So are all DMZ firewalls the same? Well, no they aren't. They range from small SoHo (Small Office/Home Office) routers up to full enterprise-level firewalls. Of course the majority of SoHo routers are not DMZ firewalls at all; their DMZ features are actually exposed hosts, which have less protection than a normal machine and little or no separation from the internal network. This is bad, as any successful attack on the exposed host now has free range over the internal network.

Moving towards proper enterprise firewalls, we still have two different types of firewall often referred to as a DMZ firewall; they are either logical or physical DMZ firewalls. Obviously, the physical DMZ firewall offers the best level of security, but what's the difference? The difference is that they are a screened-host and a screened-subnet firewall respectively. Although your firewall arrives as a single rack-mounted unit, internally it is made up of a set of components - most notably packet filtering routers and a bastion host. The packet filtering routers simply permit or deny access based on IP address, TCP port number or protocol type. More sophisticated functionality is implemented by using proxies on the secure bastion host. The diagram below shows the logical setup of a full DMZ firewall, with a separate screened-subnet (purple) between the insecure Internet (red) and the secure Intranet (green).
The point here is that no communication is allowed directly from the Internet to the Intranet. All traffic can be forced through the Bastion Host to perform URL, content, virus and SPAM filtering, among others. In the screened-host solution, there is no internal packet filtering router or separate screened-subnet. The information servers are logically separated from the information servers, but not physically. They may be on different VLANs (Virtual Local Area Networks) and physical firewall ports, but they are only separated by the logic of these mechanisms. One way to tell if your firewall is a screened-host is to see if you can set an Access Control List (ACL) between your information servers and your internal machines and see if the virus checking will work between them as well. If you can't set up an internal ACL or perform real-time virus checking on internal traffic, then you probably have a screened-host firewall.
The most secure way to implement a firewall is to have the full screened-subnet firewall, depicted above. This solution can have multiple internal connections that are all separate networks connected via the firewall. The advantage of this is that there is physical separation between your information servers and your internal machines. Indeed, it is possible to separate your organisation internally into departments or by access medium, i.e. wired and wireless networks are physically separated and wireless networks are treated as less secure. Another 'best practice' is to have your servers separated from the rest of your network and restrict access to them. If you have an intranet server, for example, why allow more than HTTP (port 80) and HTTPS (port 443) access to it from your network? If we lock the network down in this way we can better halt the spread of malware on our internal network even if we do get infected. This is moving towards bringing the firewall in from the edge of the network to the core, to protect our network as a whole. Remember, firewalls can't protect against traffic that doesn't go through them.

Comments

Popular Posts

You say it's 'Security Best Practice' - prove it!

Over the last few weeks I have had many conversations and even attended presentations where people talk about 'Security Best Practices' and how we should all follow them. However, 'Best Practice' is just another way of saying 'What everyone else does!' OK, so if everyone else does it and it's the right thing to do, you should be able to prove it. The trouble is that nobody ever measures best practice - why would you? If everyone's doing it, it must be right.

Well, I don't agree with this sentiment. Don't get me wrong, many of the so-called best practices are good for most organisations, but blindly following them without thought for your specific business could cause as many problems as you solve. I see best practice like buying an off-the-peg suit - it will fit most people acceptably well if they are a fairly 'normal' size and shape. However, it will never fit as well as a tailored suit and isn't an option for those of us who are ou…

McAfee Secure Short-URL Service Easy to Foil

McAfee have launched a Beta URL shortening service with added security features. As Brett Hardin pointed out they are a little late to the game. However, there are so many abuses of URL shortening services that I commend them for trying.

Basically, what their service does is allow you to create short easy URLs (like any other service). However, unlike other services, when you click on the link, it opens a frames page with the content in the bottom frame and the McAfee information in the top frame. This information includes details about the domain you are connecting to, the type of company it's registered to and a big green tick or red cross to tell you whether the site is safe or not. This is decided by their 'Global Threat Intelligence', which will block known bad URLs and phishing sites. That's good, if it works.

I said above that I commend them for trying to provide this service. There are some obvious failings in their solution though, that render their protection…

Trusteer or no trust 'ere...

...that is the question. Well, I've had more of a look into Trusteer's Rapport, and it seems that my fears were justified. There are many security professionals out there who are claiming that this is 'snake oil' - marketing hype for something that isn't possible. Trusteer's Rapport gives security 'guaranteed' even if your machine is infected with malware according to their marketing department. Now any security professional worth his salt will tell you that this is rubbish and you should run a mile from claims like this. Anyway, I will try to address a few questions I raised in my last post about this.

Firstly, I was correct in my assumption that Rapport requires a list of the servers that you wish to communicate with; it contacts a secure DNS server, which has a list already in it. This is how it switches from a phishing site to the legitimate site silently in the background. I have yet to fully investigate the security of this DNS, however, as most o…